Nguyên hàm của 1/x

     

1. Nguyên hàm là gì?

Cho hàm số f(x) khẳng định trên K. Hàm số F(x) được điện thoại tư vấn là nguyên hàm của hàm số f(x) trên K nếu như F"(x) = f(x) với mọi x ∈ K.

Bạn đang xem: Nguyên hàm của 1/x

2. đặc điểm nguyên hàm

Nguyên hàm tất cả 3 tính chất đặc biệt quan trọng cần nhớ:

*

2. Bảng nguyên hàm

a) Bảng bí quyết nguyên hàm cơ bản

*

b) Bảng nguyên hàm mở rộng

*

3. Các phương thức tính nguyên hàm

Dạng 1. Nguyên hàm cơ bản

Dạng 2. Sử dụng phương thức ĐỔI BIẾN để tìm nguyên hàm

a) Đổi thay đổi tổng quát

Bước 1: chọn t = φ(x). Trong những số đó φ(x) là hàm số mà lại ta chọn thích hợp.Bước 2: Tính vi phân nhì về dt = φ"(x)dxBước 3: biểu thị f(x)dx = g<φ(x)>φ"(x)dx = g(t)dt.Bước 4: khi đó $I = int fleft( x ight)dx $ $ = int gleft( t ight)dt $ $ = Gleft( t ight) + C$

Ví dụ: tra cứu nguyên hàm của hàm số $I = int frac1xsqrt ln x + 1 dx $

Hướng dẫn giải

Bước 1: chọn $t = sqrt ln x + 1 Rightarrow t^2 = ln x + 1$Bước 2: Tính vi phân hai về dt = – 3sinx.dxBước 3: biểu hiện $int fleft( x ight)dx = – frac13int frac1t.dt $Bước 4: khi ấy $I = – frac13ln left| t ight| + C$ $ = – frac13ln left| 1 + 3cos x ight| + C$

b) Đổi biến dạng 1

*

c) Đổi biến dạng 2

*

Dạng 3. Nguyên hàm từng phần

*

Nguyên tắc chung để đặt u với dv: tìm kiếm được v thuận lợi và ∫v.du tính được

Nhấn mạnh: sản phẩm tự ưu tiên khi chọn đặt u: “Nhất lô, nhị đa, tam lượng, tứ mũ” (hàm lôgarit, hàm nhiều thức, lượng chất giác, hàm mũ).

Ví dụ: kiếm tìm nguyên hàm của hàm số f(x) = x.e2x

Hướng dẫn giải

Bước 1: Đặt $left{ eginarrayl u = ln left( 2x ight)\ dv = x.dx endarray ight. Rightarrow left{ eginarrayl du = frac1x\ v = fracx^22 endarray ight.$

Bước 2: Ta thấy $Fleft( x ight) = int fleft( x ight) dx$ $ = fracx^22.ln left( 2x ight) – int frac1x.fracx^22 dx$ $ = fracx^22.ln left( 2x ight) – fracx^24 + C$ $ = fracx^22.left( ln left( 2x ight) – frac12 ight) + C$

Dạng 4. Phương pháp tính nguyên hàm bằng máy tính

Cho nguyên hàm $int fleft( x ight)dx $ = F(x) + C. Hãy tìm kiếm f(x) hoặc F(x)

Hướng dẫn

Để giải, mình đang hướng dẫn phương pháp bấm máy tính xách tay nguyên hàm nhanh theo 3 bước sau:

Bước 1: nhận shift $fracddxleft( Fleft( x ight) ight) – fleft( X ight)$

Bước 2: thừa nhận phím Calc nhập X = 2.5

Bước 3: Đánh giá nghiệm

Nếu công dụng bằng 0 (gần bằng 0 ) thì đó là đáp án yêu cầu chọn

Ví dụ: Tìm toàn bộ nghiệm của hàm số f(x) = $frac12x + 3$ là

A. $frac12.lnleft| 2x + 3 ight| + C$

B. $frac12.lnleft( 2x + 3 ight) + C$

C. Ln|2x + 3| + C

D. $frac1ln 2.$ln|2x + 3| + C

Hướng dẫn bấm thứ tính

Bước 1: Nhập vào máy tính xách tay casio $fracddxleft( frac12.ln left( 2x + 3 ight ight) ight)_x = X – frac12x + 3$

Bước 2: CALC X = -2

Lưu ý: Trong tác dụng A cùng C nếu mang lại X = 2 thì đầy đủ cho kết quả là 0. Vậy khi tất cả trị tuyệt vời thì mang đến X một giá trị đến biểu thức vào trị tuyệt đối âm.

Kết luận: Chọn giải đáp A.

Xem thêm: Please Wait

Dạng 5. Tính nguyên hàm của hàm số

Tìm nguyên hàm dạng $left< eginarrayl I = int P(x)sin axdx \ I = int P(x)c mosaxdx endarray ight.$ với $P(x)$ là một nhiều thứcTa lựa chọn 1 trong hai cách sau:

Cách 1: áp dụng nguyên hàm từng phần, thực hiện theo quá trình sau:

Bước 1: Đặt: $left{ eginarrayl u = P(x)\ dv = left< eginarrayl mathop m s olimits minaxdx\ mcosaxdx endarray ight. endarray ight.$ $ o left{ eginarrayl du = P"(x)dx\ v = left< eginarrayl frac – 1ac mosax\ frac m1 masin ax endarray ight. endarray ight.$Bước 2: núm vào bí quyết nguyên hàm từng phần.Bước 3: thường xuyên thủ tục như trên ta đã khử được bậc của đa thức.

Xem thêm: Hướng Dẫn Cách Sắp Xếp Và Lọc Dữ Liệu Trong Googlesheet, Sắp Xếp Và Lọc Dữ Liệu

Cách 2: Sử dụng phương pháp hệ số bất định, tiến hành theo công việc sau:

Bước 1: Ta có: $I = int P(x)c mosaxdx $ $ m = A(x)sinax + B(x)cosax + C$ $(1)$, trong số ấy $A(x)$ với $B(x)$ là các đa thức thuộc bậc với $P(x).$ Bước 2: rước đạo hàm hai vế của $(1)$: $P(x)c mosax$ $ m = A"(x)cosax – A(x)a m.sinax$ $ m + B"(x)sinax + aB(x)cosax.$Bước 3: Sử dụng phương pháp hệ số cô động ta xác định được $A(x)$ và $B(x).$

Nhận xét: giả dụ bậc của đa thức lớn hơn $3$ thì bí quyết 1 trầm trồ cồng kềnh, vì khi ấy ta thực hiện số lần nguyên hàm từng phần bởi với số bậc của nhiều thức, cho nên vì thế ta đi đến đánh giá và nhận định như sau:

Nếu bậc của đa thức nhỏ tuổi hơn hoặc bằng $2$: Ta thực hiện cách 1.Nếu bậc của nhiều thức lớn hơn hoặc bởi $3$: Ta thực hiện cách 2.

Ví dụ: Tìm nguyên hàm $int xsin ^2xdx .$

Giải

Ta có: $I = int xleft( frac1 – c mos2x2 ight)dx $ $ = frac12int xdx – frac12int xcos 2xdx $ $ = frac14x^2 – frac12J$ $(1).$

Tính: $J = int xcos 2xdx .$

Đặt: $left{ eginarrayl u = x\ dv = c mos2xdx endarray ight.$ $ o left{ eginarrayl du = dx\ v = frac12sin 2x endarray ight.$ $ Rightarrow J = fracx2sin 2x – frac12int sin 2xdx $ $ = fracx2sin 2x + frac14c mos2x + C.$

Thay vào $(1)$: $I = frac14x^2 – frac12left( fracx2sin 2x + frac14c mos2x ight)$ $ = frac14left( x^2 – xsin 2x – frac12c mos2x ight) + C.$

3. Bài bác tập nguyên hàm

Bài tập 2: Tìm nguyên hàm $I = int left( x^3 – x^2 + 2x – 3 ight)mathop m s olimits minxdx .$

Giải

Theo dấn xét trên, ta sử dụng phương pháp hệ số bất định. Ta có: $I = int left( x^3 – x^2 + 2x – 3 ight)mathop m s olimits minxdx $ $ = left( a_1x^3 + b_1x^2 + c_1x + d_1 ight)c mosx$ $ m + left( a_2x^3 + b_2x^2 + c_2x + d_2 ight)mathop m s olimits minx$ $(1).$

Lấy đạo hàm nhì vế của $(1)$:

$ Leftrightarrow left( x^3 – x^2 + 2x – 3 ight)mathop m s olimits minx$ $ m = < ma_ m2x^3 + left( 3a_1 + b_2 ight)x^2$ $ + left( 2b_1 + c_2 ight)x + c_1 + d_2 m>cosx$$ – < ma_ m1x^3 – left( 3a_2 – b_1 ight)x^2$ $ – left( 2b_2 – c_1 ight)x + c_2 – d_1>sin x$ $(2).$

Đồng nhất thức ta được: $left{ eginarrayl a_2 = 0\ 3a_1 + b_2 = 0\ 2b_1 + c_2 = 0\ c_1 + d_2 = 0 endarray ight.$ và $left{ eginarrayl – a_1 = 1\ 3a_2 – b_1 = – 1\ 2b_2 – c_1 = 2\ – c_2 + d_1 = – 3 endarray ight.$ $ Rightarrow left{ eginarrayl a_1 = – 1;a_2 = 0\ b_1 = 1;b_2 = 3\ c_1 = 4;c_2 = – 2\ d_1 = 1;d_2 = – 4 endarray ight.$

Khi đó: $I = left( – x^3 + x^2 + 4x + 1 ight)c mosx$ $ m + left( m3 mx^ m2 – 2x + 4 ight)mathop m s olimits minx + C.$